
1. Introduction

Whether or not the Standard Model (SM) describes
charge-parity (CP) violation completely or there are
additional sources of CP-violation beyond the frame-
work of SM is an open question. Answers to this ques-
tion may be found in studies of K, B meson decays and
also in searches for CP- or T- violation in other areas of
physics.

As the CP (or T) violating phase of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix is associated with
the sector of heavy quarks, in the field of low energy
physics the expected mechanism of T-violation is con-
nected with meson exchange between nucleons [1]. The
measured value of the T-violating amplitude in neutron
transmission experiments is important in order to
improve the value of the isovector pion coupling
constant.

The most attractive experiment in this plan is the
search for T-violation in a two-level system like139La

where in the vicinity of the p-wave resonance, the
P-odd effect is enhanced by 5 or 6 orders of magnitude
[2]. Similar enhancement is expected for the interaction
breaking P-, T-invariance [3]. The problem has been
discussed in the literature for more than 20 years, but
until now no realistic proposals of such an experiment
have been formulated.

Traditionally, the scattering amplitude of polarized
neutrons with a polarized nucleus is described as
follows:

(1)

Here I is spin of a nucleus, pt is polarization of a target,
s is a neutron spin, and k is its wave vector. We note
that the degree of target polarization can be rather high.
So, for example, in Ref. [4] polarization of approxi-
mately 50 % is obtained with a (15 × 15 × 4) mm3

crystal.
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There are a number of proposals on the determina-
tion and measurement of the weak amplitude D [5-11].
The measurement of this amplitude is an asymmetry in
the counting rate of neutrons polarized with and against
the direction of the T-violating field. However, accord-
ing to the analysis in Ref. [12, 13], the physical realiza-
tion of these experiments is extremely difficult. The
known theoretical limit [1,2] D ≤ 10–4 C, obtained from
modern restrictions on the neutron electric dipole
moment [14], can be reached in proposed experiments.
These experiments propose achieving an unprecedent-
ed (about 10–4) angular accuracy in the orientation of
the neutron polarization vector and the requirement that
the efficiencies of analyzer and polarizer are equal at
the level of 10–4.

A completely different approach without the speci-
fied difficulties and consisting in refusal from the exact
orientation of neutron spins concerning a direction of
the T-violating field, gives the modified resonant
method of oscillating fields. This method allows
an increase in the number of degrees of freedom to
operate the neutron spectrum.

2. Ramsey’s Method

The resonant two-coils Ramsey’s method [15] is
widely applied to measurements of pseudomagnetic
fields [16] and updating is reduced to the registration of
a phase of a radio-frequency field at the moment of
neutron detection.

Let us define a system of coordinates in which the
external magnetic field and the initial polarization
vector of the neutrons are directed along the axis z.
Neutrons propagate along an axis y and an axis x is the
direction of the vector product [k × I].

The amplitude of a radio-frequency field and the
length of the coil can be chosen in such a manner that
spins of the neutrons having the energy of a p-wave

resonance E0 = 0.734 eV flip on , and they are guid-

ed in x-y plane perpendicular to an external magnetic
field. At random distribution of field phases δ, which
we shall associate with the phase of a neutron, spins
with equal probability in a direction are distributed in
this plane.

The initial density matrix is diagonal and the compo-
nents of the polarization vector in the chosen system of
coordinates are equal:

We define as well the geometry of the experimental
setup. The length of each coil is equal to l; the length of
a target is equal to d; and L is distance between each of
coils and a target. Let us select the gyromagnetic ratio
equal to unity. In this case the neutron spin precession
frequency ω is equal to the value of magnetic field H.
The Hamiltonian for a neutron in the magnetic field is
given by:

(2)

Here n is the unit vector directed along the magnetic field.
For effective fields of a target, we shall accept defi-

nitions and designations as in Ref. [12]. The spin
dependent part of amplitude in Eq. (1) characterizes the
effective field vector b with the following components:

a T-violating field , a field of weak interac-

tion , and a pseudomagnetic field

ReB represents the residual magnetic field, that is, the
difference between the real part of a pseudomagnetic
field of a target and an external magnetic field.

The target Hamiltonian can then be written as:

(3)

In this expression the spin precession frequency in an

effective field is

As is accepted in neutron optics, the effective fields
are complex. Real parts of fields are responsible for a
spin precession, and imaginary ones for absorption of
neutrons in the substance of a target. The known
Hamiltonian defines the corresponding evolution oper-
ator U = exp(– iHt), which will transform the density
matrix. An expression for the evolution operator in a
radio-frequency coil may be found in Ref. [17]:

Here tl is the neutron flight time through the coil, and
the unit vector n2 is determined by a phase δ of a radio-
frequency field at the moment a neutron enters a coil.
The components of this vector are given by:
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3. A Phase Spectrum of Neutrons and
Counting Rate Asymmetries

The density matrix of neutrons propagating through
the described system is calculated from the following
expression:

(4)

Here the indices of evolution operators define, accord-
ingly, the number of the coil, distance L from the coil
up to a target, and int — interaction with a target.

The two-dimensional neutron spectrum is defined as
follows:

(5)

To define the direction of spin before target, one needs
to know the density matrix. It has the following expres-
sion:

(6)

t l+L is the neutron flight time through the coil, and
the interval L up to the target, which is convenient to
represent as t l+L. T is the flight time through the entire
system.

Omitting the exponent in Eq. (5), which is respon-
sible for the total loss rate due to absorption in the
target and does not merit further interpretation, we
obtain an expression for a phase spectrum of neutrons. 

It follows from Eq. (6) that for the coil the interval

(7)

corresponds to neutrons with the spins distributed in a
semi-plane with a positive direction of the x-axis.
Phases δ shift this interval on π that determines
neutrons with spin directions in semi-plane 

Shift intervals in Eq. (7) on and will set the

intervals with spin directions in semi-planes

Integration of a phase spectrum on the specified
intervals gives values N+, N–, allowing one to calculate
the asymmetry in the counting rate of neutrons connect-
ed with an axis x
and an axis y (direction k).

(8)

(9)
Integration of a phase spectrum in limits from 0 up to 2π
gives total number of neutrons: N = N+x+N–x = N+y+N–y,

(10)
The normalization factors in Eqs. (8-10) are the values
n = N0 exp (– Im At), where N0 is the initial neutron
flux.

4. Determination of the T-Violating
Amplitude

Let us discuss the experimental conditions for the
determination of a T-violating amplitude. We shall
suppose that the degree of compensation of a pseudo-
magnenic field by external field provides the following
inequality

(11)

This condition is satisfied if the residual field equals
about 1 % of a pseudomagnetic field. For neutrons with
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the energy at the maximum of p-wave resonance, it is
possible to choose the following options of experimen-
tal parameters:

(12)

where t0 means time flight for neutron with energy of
maximum of p-wave resonance E0.

At such parameters, the three last lines in Eqs. (8)
and (9) convert in a zero, and it becomes very easy to
define the T-violating amplitude in this case. But at a
displacement of the neutron energy from E0, the sup-
pression factors differ from zero, and one needs to
examine backgrounds more carefully.

For estimations one uses the fact that in the maxi-
mum of the p-wave resonance ReC is close to zero,
and ImD ≅ 10–4 ImC and in accordance with Eq. (11)
ReBt ≅ 0.1. Then, in Eq. (8), it is possible to neglect
terms in which the values are less than 10–5 ImCt and in
Eq. (9)  terms smaller than ImCt by two or more orders
of magnitude. As a result of such a reduction, Eqs. (8)
and (9) in expanded form give the following expression:

(13)

(14)

Notice that in Eq. (14)  the top signs allow one to
define an imaginary part of a P-odd amplitude. We can
estimate the contribution of the last term in Eq. (13),
considering that in the area of a resonance maximum
value, ImC is changed insignificantly. Averaging this
term in limits from t0 – ∆t up t0 + ∆t , we shall obtain

In this equality ωt0 is angle of spin turn in a pseudo-
magnetic field of a target. For 1 cm of La this angle,
according to value of the pseudo-magnetic moment

from Ref. [16], is 17 radian. The suppression factor in
this expression is equal to 10–6 for the energy window
2 × 10–3 eV and increases with an increase in the ener-
gy interval. It means that the background from ImC can
be taken into account if the energy resolution is not
worse than between 0.3 % and 0.5 %.

Passing in Eqs. (13) and (14) to average values, we
shall obtain a final expression for the determination of
the imaginary part of the T-violating field.

(15)

Because the coefficient in square brackets, which
depends on the difference in efficiencies of analyzer
and polarizer, must be known with precise accuracy, it
takes additional measurement for its determination. In
the case of a target that is unpolarized and isolated from
an external magnetic field, it follows from Eq. (9):

(16)

Equations (15) and (16) represent the essential idea
of the method. We suppose exact knowledge of the
phase shift between generators of coils and neutron
energy.

Thus, from this analysis it follows that the measure-
ment of the T-violating amplitude of interaction of the
polarized neutrons with the polarized target is reduced
to carrying out two experiments  with a polarized and
non-polarized target.

5. Conclusion

Two-dimensional phase spectra of neutrons with
energy in the region of the p-wave resonance contain
sufficient information for the determination of a
T-violating amplitude. The requirements presented here
to measure the system in the described method can be
realized in feasible experiment. In particular, the preci-
sion compensation of a pseudo-magnetic field by an
external magnetic field is not obligatory. It is sufficient
to have compensation on the level of 1 %.
One feature of the method is the opportunity of

obtaining integrated asymmetries in the neutron count-
ing rate as in the direction of the T-violating field and
in the direction of the P-odd field of weak interaction
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from the same phase spectrum. These two asymmetries
define P- and T-violating amplitudes in the maximum
of the p-wave resonance. For the determining the
amplitude in full region of the resonance, it is necessary
to take into account background contributions arising
from interaction of neutrons with the pseudo-magnetic
field and P-odd field of the weak interaction. In
this case the imaginary part of the T-violating field is
separated from four neutron spectra, two of which are
measured with a non-polarized target.
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